Derivative pricing with virtual arbitrage

نویسندگان

  • Kirill Ilinski
  • Alexander Stepanenko
چکیده

In this paper we derive an effective equation for derivative pricing which accounts for the presence of virtual arbitrage opportunities and their elimination by the market. We model the arbitrage return by a stochastic process and find an equation for the average derivative price. This is an integro-differential equation which, in the absence of the virtual arbitrage or for an infinitely fast market reaction, reduces to the Black-Scholes equation. Explicit formulas are obtained for European call and put vanilla options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to account for virtual arbitrage in the standard derivative pricing

In this short note we show how virtual arbitrage opportunities can be modelled and included in the standard derivative pricing without changing the general framework. Whatever people say about the drawbacks of the Black-Scholes (BS) approach [1] to derivative pricing, it is a standard method and almost any pricing and hedging software in nancial institutions is based on it. Practitioners have g...

متن کامل

Towards non-equilibrium option pricing theory

A recently proposed model (by Ilinski et al.) for the dynamics of intermediate deviations from equilibrium of financial markets ( “virtual” arbitrage returns) is incorporated within an equilibrium (arbitrage-free) pricing method for derivatives on securities (e.g. stocks) using an equivalence to option pricing theory with stochastic interest rates. Making the arbitrage return a component of a f...

متن کامل

Virtual Arbitrage Pricing Theory

We generalize the Arbitrage Pricing Theory (APT) to include the contribution of virtual arbitrage opportunities. We model the arbitrage return by a stochastic process. The latter is incorporated in the APT framework to calculate the correction to the APT due to the virtual arbitrage opportunities. The resulting relations reduce to the APT for an infinitely fast market reaction or in the case wh...

متن کامل

Stochastic relaxational dynamics applied to finance: towards non-equilibrium option pricing theory

Non-equilibrium phenomena occur not only in physical world, but also in finance. In this work, stochastic relaxational dynamics (together with path integrals) is applied to option pricing theory. Equilibrium in financial markets is defined as the absence of arbitrage, i.e. profits “for nothing”. A recently proposed model (by Ilinski et al.) considers fluctuations around this equilibrium state b...

متن کامل

A New Approach to International Arbitrage Pricing

This paper uses a nonlinear arbitrage pricing model, a conditional linear model, and an unconditional linear model to price international equities, bonds, and forward currency contracts. Unlike linear models, the nonlinear arbitrage pricing model requires no restrictions on the payoff space, allowing it to price payoffs of options, forward contracts and other derivative securities. Only the non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008